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The dynamic characteristics (i.e., natural frequencies and mode shapes) of a partially "lled
and/or submerged, horizontal cylindrical shell are examined. In this investigation, it is
assumed that the #uid is ideal, and #uid forces are associated with inertial e!ects only:
namely, the #uid pressure on the wetted surface of the structure is in phase with the
structural acceleration. The in vacuo dynamic characteristics of the cylindrical shell are
obtained using standard "nite element software. In the &&wet'' part of the analysis, it is
assumed that the shell structure preserves its in vacuomode shapes when in contact with the
contained and/or surrounding #uid and that each mode shape gives rise to a corresponding
surface pressure distribution of the shell. The #uid}structure interaction e!ects are
calculated in terms of generalized added masses, using a boundary integral equation method
together with the method of images in order to impose an appropriate boundary condition
on the free surface. To assess the in#uence of the contained and/or surrounding #uid on the
dynamic behaviour of the shell structure, the wet natural frequencies and associated mode
shapes were calculated and compared with available experimental measurements.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Dynamic characteristics of cylindrical shells partially or completely in contact with #uid are
of great importance in a variety of engineering applications, such as, vibration of liquid
storage tanks, #exible pipelines conveying #uid, etc. All these vibration problems are
complicated by the interactions that take place between structure and #uid. This is due to
the vibration of the structural surface in contact with the #uid medium imparting motion to
the #uid, thus altering its pressure, and, hence, inducing reactive forces on its surface.

The free vibration analysis of partially "lled, vertical cylindrical shells has been dealt with
by various authors (see, for example, references [1}6]). However, only a few studies appear
to have been carried out on the vibration of partially "lled and submerged horizontal
cylindrical shells. Amabili and Dalpiaz [7] investigated experimentally the natural
frequencies and mode shapes of a partially "lled horizontal cylindrical shell. Amabili [8]
introduced two approximate analytical solutions to calculate the free vibration
characteristics of a horizontal cylindrical shell when partially "lled, and compared these
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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predictions with experimental measurements. Amabili [9] extended this study to investigate
the e!ects of both internal and external #uid on dynamic characteristics. Alternatively,
Ergin [10, 11] presented an approximate analytical method to calculate the natural
frequencies and mode shapes of partially "lled and submerged shells. In these studies
[10, 11], although the velocity potential function adopted does not satisfy an appropriate
boundary condition on the #uid's free surface, very good agreement was obtained with
experimental measurements available in the open literature. In the same vein, Ergin et al.
[12] studied the dynamic behaviour of a thin, horizontal cylindrical shell vibrating at "xed
positions below a free surface in water of "nite depths. In their analysis they calculated the
generalized #uid loadings to assess the in#uence of free surface, rigid boundary and position
of submerged cylinder on the dynamic characteristics of the shell structure.

In this paper, the dynamic characteristics (i.e., wet natural frequencies and mode shapes)
of a partially "lled and/or submerged, horizontal cylindrical shell are studied. In this
investigation, it is assumed that the #uid is ideal, i.e., inviscid, incompressible and its motion
is irrotational. Furthermore, the #uid forces are associated with the inertial e!ect of the
#uid, i.e., the #uid pressure on the wetted surface of the structure is in phase with the
structural acceleration. In the analysis, it is assumed that the empty shell vibrates in its
in vacuo eigenmodes when it is in contact with #uid, and that each mode gives rise to
a corresponding surface pressure distribution on the wet part of the structure. The in vacuo
dynamic analysis entails the vibration of the shell in the absence of any external force and
structural damping and the corresponding dynamic characteristics (e.g., natural frequencies
and principal mode shapes) of the shell structure were obtained by using a standard "nite
element software (i.e., ANSYS [13]). At the #uid}structure interface, continuity
considerations require that the normal velocity of the #uid is equal to that of the structure.
The normal velocities on the wetted surface are expressed in terms of modal structural
displacements, obtained from the in vacuo dynamic analysis. By using a boundary integral
equationmethod the #uid pressure is eliminated from the problem, and using the method of
images (i.e., imposing an appropriate free surface boundary condition), the #uid}structure
interaction forces are calculated solely in terms of generalized added mass coe$cients.
During this analysis, the wet surface is idealized by using appropriate boundary elements,
referred to as hydrodynamic panels. The generalized structural mass matrix is merged with
the generalized added mass matrix and then the total generalized mass matrix is used in
solving the eigenvalue problem for the partially "lled and/or submerged structure. To assess
the in#uence of the contained and surrounding #uid on the dynamic behaviour of the shell
structure, the wet natural frequencies and associated mode shapes are calculated.
A comparison of the predicted dynamic characteristics with available experimental
measurement [8] shows very good agreement. In addition, for the half-submerged empty
horizontal cylindrical shell (i.e., #oating at a draught equal to its radius), the wet natural
frequencies and associated mode shapes predicted by the current method compare very well
with those obtained by using the three-dimensional hydroelasticity theory [12, 14].

2. MATHEMATICAL MODEL

2.1. GENERALISED EQUATION OF MOTION

The equation of motion describing the response of a #exible structure to external
excitation may be written as [15]

MUG #CVU� #KU"P, (1)
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whereM,CV,K denote the mass, structural damping and sti!ness matrices respectively. The
vectors U, U� and UG represent the structural displacements, velocities and accelerations,
respectively, and the column vector P denotes the external forces.

In an in vacuo analysis, the structure is assumed to vibrate in the absence of any structural
damping and external forces reducing equation (1) to the form

MUG #KU"0. (2)

The form of equation (2) suggests that one can express the trial solution as

U"De���. (3)

Using equation (3) in equation (2) and cancelling the common factor e���, one obtains the
equation

(!��M#K)D"0. (4)

This equation describes the simple harmonic oscillations of the free undamped structure
and the in vacuo principle modes and natural frequencies are determined from the
associated eigenvalue problem.

The distortions of the structure may be expressed as the sum of the distortions in the
principal modes,

U"Dp (t) (5)

where D is the modal matrix whose columns are the in vacuo, undamped mode vectors of
the structure. p is the principal co-ordinates matrix. By substituting equation (5) into
equation (1) and pre-multiplying by D�, the following generalized equation in terms of the
principal co-ordinates of the structure is obtained [14]:

apK (t)#bp� (t)#cp (t)"Q(t). (6)

Here a, b, c denote the generalized mass, damping and sti!ness matrices, respectively, and
are de"ned as follows:

a"D�MD, b"D�CVD, c"D�KD, Q"D�P. (7)

The generalized force matrix, Q (t) represents the #uid-structure interaction, Z(t), and all
other external forces, �(t).

2.2. FORMULATION OF THE FLUID PROBLEM

In the mathematical model, the #uid is assumed ideal, i.e., inviscid and incompressible,
and its motion is irrotational and there exists a #uid velocity vector, v, which can be de"ned
as the gradient of the velocity potential function � as

v (x, y, z, t)"�� (x, y, z, t), (8)

where

�(x, y, z, t)"Re[i��(x, y, z)e���] (9)

and �(x, y, z) satis"es Laplace's equation

��� (x, y, z)"0 (10)

throughout the #uid domain.



Figure 1. Wetted surface and image boundary for a partially "lled structure.
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On the wetted surface of the vibrating structure the #uid normal velocity must be equal to
the normal velocity on the structure and this condition can be expressed as

��/�n"!u ' n, (11)

where u is the displacement vector of the median surface of the structure and n is the unit
normal vector on the wetted surface and points into the region of interest.

In this study, it is assumed that the structure vibrates at relatively high frequencies so that
the e!ect of surface waves, for the partially "lled and/or submerged shell, can be neglected.
Therefore, the free surface condition for � can be approximated by

�"0 (12)

on the free surface.
The method of images [16] may be used, as shown in Figure 1, to satisfy this condition.

By adding an imaginary boundary region, the condition given by equation (12) at the
horizontal free surface can be omitted; thus, the problem is reduced to a classical
Neumann's case. It should also be noted that, for the internal #uid, the normal #uid velocity
cannot be arbitrarily speci"ed. It has to satisfy the incompressibility condition

��
������

��

�n
dS"0, (13)

where S
�
and S

��
represent the wetted and imaginary surfaces respectively (see Figure 1).
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Exact solution of Laplace's equation (10) can be obtained for only a limited number of
cases. An alternative solution method must be employed for a general type structure and
domain. In the present study, a boundary integral equation method [17, 18] is applied in
order to evaluate the #uid}structure interaction forces. The disturbance potential � at some
point (x, y, z) in a three-dimensional inviscid #ow "eld due to an oscillating body can be
expressed by means of a distribution of sources over the wetted and imaginary surfaces of
the structure in the following form [18]:

� (x, y, z)" ��
������

1

r(x, y, z; �, �, �)
	 (�, �, �) dS(�, �, �), (14)

where r"[(x!�)�#(y!�)�#(z!�)�]��� and (�, �, �) and 	 (�, �, �) denote a point and
the unknown source distribution over the wetted and imaginary surfaces of the structure
respectively.

By substituting boundary condition (11) into equation (14), the following integral
equation is obtained for the source density distribution 	:

2
	(x, y, z)! ��
������

�
�n �

1

r(x, y, z; �, �, �)� 	(�, �, �) dS (�, �, �)"u (x, y, z) ' n (x, y, z). (15)

Integral equation (15) is a two-dimensional Fredholm equation of the second kind. The
continuous formulation of the solution indicates that equation (15) is to be satis"ed at all
points on the wetted and imaginary surfaces of the body. Numerically, it can be solved with
the subdivision of the wetted and imaginary surfaces of the body intoNM quadrilateral panels
of area �S

�
( j"1, 2,2 , NM ) with the source strength, 	 taken as constant over each panel.

The discretized numerical solution of equation (15) is therefore satis"ed only at chosen
control points and these control points may be taken as the centroids of each panel.
Therefore, the surface integral in equation (15) can be written as the sum of the integral over
NM quadrilateral panels of area �S

�
. Equation (15) now takes the form

2
	
�
!

	M

�
���

�
��
	
�
"u


�
(i"1, 2,2,NM ), (16)

where

�
��
"��

���

�
�n �

1

r(x
�
, y

�
, z

�
; �, �, �)� dS (17)

and u

�
represents the displacement in the direction of the normal at the control point of the

ith panel. Thus, the in#uence coe$cient �
��
may be thought of as representing the velocity

induced at the ith control point (in the direction normal to the surface) by a source of unit
strength distributed uniformly over the jth panel. It is assumed that all u


�
values are known

a priori (obtained from the in vacuo analysis) and, therefore, the corresponding unknown
source strength, 	

�
, can be obtained from the solution of equation (16) for each principal

mode shape.

2.3. GENERALIZED FLUID}STRUCTURE INTERACTION FORCES

Once the deformation potentials �
�
due to the oscillation of the body in its in vacuo

eigenmodes are obtained, the rth component of the generalized #uid}structure interaction
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force amplitude due to the kth modal vibration can be expressed in terms of pressure acting
on the wetted surface of the structure as

ZM
��

"��
��

n u
�
pN
�
dS, (18)

where ur represents the rth in vacuomodal displacement vector. It should be noted that only
the normal generalized force is considered since the tangential force exerted by the #uid is
zero.

Upon the Bernoulli's equation and neglecting the second order terms, the dynamic #uid
pressure on the mean wetted surface of the #exible structure due to the kth modal vibration
becomes

P
�
"Re[p�

�
e���]"!

��
�

�t
. (19)

By substituting equation (9) into equation (19), the following expression for the pressure is
obtained:

pN
�
"���

�
. (20)

The rth component of the generalized #uid}structure interaction force amplitude due to the
kth modal vibration then takes the form

ZM
��

"��
��

nu
�
(���

�
) dS. (21)

Therefore, the generalized added mass term can be de"ned as

A
��

"


�� ��

��

n u
�
���

�
dS. (22)

If the kth principal co-ordinate is in the form of p
�
(t)"p

�
e���, then the rth component of the

generalized #uid}structure interaction force due to the kth response of the structure
becomes [12]

Z
��
(t)"��A

��
p
�
e���

"!A
��
p(
�
(t).

(23)

2.4. CALCULATIONS OF WET FREQUENCIES AND MODE SHAPES

If it is assumed that the structure vibrates freely in the absence of damping and external
excitation force, � (t), and that the #uid has negligible sti!ness, the solution of the
generalized equation of motion (6) may be expressed in the form of p (t)"p

�
e���. Therefore,

equation (6) is reduced to the form

[!�� (a#A)#c]p0"0. (24)

By solving the eigenvalue problem, expressed by equation (24), the uncoupled modes and
associated frequencies of the shell in contact with #uid are obtained. To each wet natural
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frequency �
�
, there is a corresponding wet eigenvector p0r"�p

��
, p

��
, p

��
,2, p

�
� satisfying

equation (24). The corresponding uncoupled mode shapes for the cylinder in contact with
internal and/or external #uid are obtained as [19]

u�
�
(x, y, z)"�uN

�
, vN

�
,wN

�
�"


�
���

u
�
(x, y, z)p

��
, (25)

where u
�
(x, y, z)"�u

�
, v

�
, w

�
� denote the in vacuo principal mode shapes of the empty

horizontal cylindrical shell andM is the number of mode shapes included in the analysis. It
should be noted that the hydrodynamic forces associated with the inertial e!ect of the #uid
do not have the same spatial distribution as those of the in vacuo modal forms.
Consequently, this produces hydrodynamic coupling between the modes. This coupling
e!ect is introduced into equation (24) through the added mass matrix A.

3. NUMERICAL RESULTS AND COMPARISONS

3.1. CONVERGENCE TESTS FOR FINITE ELEMENT AND BOUNDARY ELEMENT MESH SIZE

A horizontal circular cylindrical shell is chosen to demonstrate the applicability of the
aforementioned theory to structures partially "lled and/or submerged such as liquid storage
tanks, submarine pressure hull, etc. The shell is of length ¸"664 mm, radius R"175 mm,
and thickness h"1 mm, made of stainless steel and sealed by steel plates at both ends. The
shell was investigated experimentally by Amabili and Dalpiaz [7] and Amabili [8]. The
in vacuo dynamic characteristics of this shell structure were obtained using the ANSYS
"nite element software [13]. This produces information on natural frequencies and
principal mode shapes of the empty structure in vacuo. In these calculations, the thin
cylindrical shell was discretized with four-noded quadrilateral shell elements, including
both membrane and bending sti!ness in#uences. However, a limited number of three-noded
triangular elements were used to model the end seals.

In a preliminary calculation, 256 elements were distributed over the shell structure and 48
elements over each end. The distribution over the cylindrical shell consists of 16 equally
spaced elements around the circumference and 16 equally spaced elements along the shell
structure. To test the convergence of the calculated dynamic properties, i.e., natural
frequencies and principal mode shapes, the number of elements over the cylindrical shell
surface was increased "rst to 1024*32 elements around the circumference and 32 elements
along the shell and to 96 over each end. Finally, the number of elements around the
circumference was increased to 64 whilst the number of elements along the shell was
retained as 32. Therefore, a total number of 2432 elements were distributed over the whole
structure with 192 elements over each end seal. Table 1 shows the calculated natural
frequencies obtained from the analytical calculations, based on the assumption of simply
supported end conditions, [10, 20] and ANSYS for the "rst eight modes. The results occur
in pairs. That is, in general, for each natural frequency, there exists a pair of mode shapes
satisfying the relevant orthogonality conditions. The mode shapes of the shell structure in
vacuo are identi"ed with the number of standing waves around the circumference, n, and the
number of half-waves along the shell, m. It should be noted that the circumferential number
of standing waves does not necessarily occur in order of sequence, as can be seen from
Table 1. The order depends on geometrical characteristics of the shell structure. The
in vacuo dynamic characteristics of the shell are scaled to a generalizedmass of 1 kgm�. The
di!erences in the results, shown in Table 1, indicate that the calculated values are slowly
converging with increasing number of elements. The results of the "nal idealization (2432



TABLE 1

Convergence of FEM natural frequencies (in vacuo) (Hz)

Mode
(m, n) 16�16 idealization 32�32 idealization 64�32 idealization Analytical [10, 20]

1}4 226)2 223)8 223)8 221)1
1}4 227)4 225)0 224)2
1}5 241)6 234)1 232)4 230)3
1}5 241)6 234)1 232)4
1}6 319)2 303)1 299)2 298)0
1}6 319)2 303)3 299)2
1}3 316)4 317)1 317)1 315)7
1}3 316)4 317)1 317)1

TABLE 2

Convergence of wet natural frequencies for the half-,lled cylindrical shell (Hz)

Mode 16�32 idealization 32�32 idealization 32�64 idealization

1 109)0 101)2 101)1
2 110)2 102)0 102)0
3 140)9 130)5 130)3
4 145)6 134)5 134)4
5 197)2 184)6 184)4
6 202)8 186)6 186)5
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elements) compare very well with the analytical calculations; hence, they were adopted for
the in vacuo dynamic characteristics of the horizontal cylindrical shell.

To test the convergence of the hydrodynamic predictions, various numbers of
hydrodynamic panels were distributed around the circumference and along the length of the
wetted surface for the half-"lled cylindrical shell. The main aim of this exercise was to
represent accurately the distortional mode shapes of the wetted surface area of the structure.
For the half-"lled shell, three di!erent idealizations of panel distribution over the wetted
surface of the cylindrical structure were considered (see Table 2). In the "rst idealization, the
distribution involved 16 equally spaced quadratic panels around the wetted circumference
and 32 equally spaced quadratic panels along the cylindrical shell. Thus, a total number of
512 panels were adopted over the wetted surface of the shell. In a second idealization, 1024
panels were used*the number of panels around the wetted circumference was increased to
32, whilst the distribution along the shell was maintained as in the "rst idealization. Finally,
for a third idealization, the number of panels along the shell structure was increased to 64
whilst the number of panels distributed around the wetted shell circumference was retained
as 32. Therefore, a total number of 2048 panels were adopted over the wetted surface of the
shell structure for this "nal idealization. Table 2 shows the convergence of the predicted wet
natural frequency values with increasing number of hydrodynamic panels for the half-"lled
cylindrical shell. The discrepancies between the predictions based on the 32�32 and 32�64
idealizations are negligibly small for the "rst six wet modes of the half-"lled cylindrical shell.
Therefore, it can be concluded that the 32�32 idealization adequately represents the
distortional shapes around the circumference and along the shell. The same angular



Figure 2. Modes and associated frequencies of 4/5 "lled cylindrical shell.
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(approximately 5)633) and axial spaces (2)075 cm) were also adopted for the results
presented in Figures 2}5 and Tables 3 and 4(a) and (b). Accordingly, the wetted surface of
the cylindrical shell was discretized using 1024 hydrodynamic panels for the half-"lled
and/or half-submerged cases*32 around the wetted circumference and 32 along the shell,
and 1344 hydrodynamic panels for the 4/5-"lled case*42 around the wetted circumference and
32 along the shell and 704 hydrodynamic panels*22 around the wetted circumference and
32 along the shell for the 1/5-"lled case. In addition, for the partially "lled and/or
submerged shell structure, convergence studies were carried out to establish the number of
modes needed for the predictions presented in this study. A maximum number of M"24
in vacuo modes was included in the analysis*12 of which were symmetric and 12
antisymmetric with respect to the symmetry plane through the centre of the shell and
perpendicular to the free surface of the #uid.

3.2. CALCULATED RESULTS AND COMPARISONS

By solving the eigenvalue problem, equation (24), the uncoupled modes and associated
frequencies of the shell partially in contact with #uid are obtained. Figures 2, 3 and 4 show
the predicted mode shapes and wet natural frequencies, respectively, for the 4/5-"lled,



Figure 3. Modes and associated frequencies of half "lled cylindrical shell.
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half-"lled and 1/5-"lled shells. It must be realized that the mode shapes are either symmetric
or antisymmetric about the plane through the centre of the shell and perpendicular to the
free surface of the #uid. The mode shapes in Figures 2}4, corresponding to the "rst six wet
natural frequencies, are ordered and numbered simply with frequency increasing; because of
this, the circumferential mode shapes are not described by the circumferential wave patterns
as obtained from the in vacuo analysis. All the modes shown in Figures 2}4 have a shape
with one longitudinal half-wave (m"1). The predicted wet natural frequencies and mode
shapes, obtained from equations (24) and (25), respectively, compare very well with the
corresponding experimental results [8], as seen in Figures 2}4. However, there are
di!erences between the predictions and experimental measurements. These di!erences lie in
the range between 0)3 and 3)2% for the 4/5-"lled cylinder, 2)8 and 3)5% for the half-"lled
cylinder, and 0)2 and 3)2% for the 1/5-"lled cylinder. The wet natural frequencies for the
partially "lled horizontal cylindrical shell are summarized in Table 4(a).

The generalized added mass values associated with the distortional in vacuo modes are
a function of the number of waves around the circumference and the number of half-waves
along the cylinder. They gradually decrease with increasing number of circumferential
waves, n. The calculated generalized added mass values, for only the half-"lled shell
structure, are presented in Table 3 for the "rst 10 distortional mode shapes*"ve symmetric
and "ve antisymmetric. Table 3 also shows the hydrodynamic coupling between the



Figure 4. Modes and associated frequencies of 1/5 "lled cylindrical shell.
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in vacuo mode shapes. It is expected that the hydrodynamic coupling between the
symmetric and antisymmetric modes would be very small. However, there is considerable
coupling between some symmetric and antisymmetric modes. This is because some of the
mode shapes obtained from the "nite element analysis are not perfectly symmetric or
antisymmetric with respect to the plane of symmetry. The generalized added mass values in
Table 3 are obtained for the in vacuo modes scaled to a generalized mass of 1 kgm�.

The analysis was subsequently extended to investigate the e!ect of the external #uid on
the dynamic behaviour of the empty shell. The calculated wet natural frequencies and
associated mode shapes are shown in Figure 5 for the cylindrical shell half-submerged
(i.e., #oating at a draught equal to its radius). All wet natural frequencies and associated
mode shapes shown in Figure 5 are evaluated by using equations (24) and (25) respectively.
The predictions for the current method make use of equation (22) when calculating the
generalized added mass matrix A. The values of the current method compare well with
those obtained from the three-dimensional hydroelasticity method [12], as can be seen in
Figure 5. The hydroelasticity method includes the in#uence of the boundary constrains
introduced by the free-surface disturbances. Therefore, in order to obtain
a frequency-independent generalized added mass for the half-submerged shell, a very high
frequency of oscillation (i.e., 100 rad/s) on the free surface is considered. It is well known
that, for a surface-piercing oscillating body or a submerged body oscillating close to the free



TABLE 3

Generalized added mass coe.cients (kgm�) of the half-,lled cylindrical shell for the ,rst
ten modes

Mode
m, n

1, 4
sym

1, 4
asym

1, 5
sym

1, 5
asym

1, 6
sym

1, 6
asym

1, 3
sym

1, 3
asym

1, 7
sym

1, 7
asym

1, 4 sym 2)22 0)0 1)34 0)43 !0)15 0)0 1)74 0)0 !0)26 !0)28
1, 4 asym 0)0 2)46 !0)43 1)32 0)0 0)0 0)0 1)77 0)27 !0)25
1, 5 sym 1)34 !0)43 1)97 0)05 !1)08 !0)35 0)0 0)0 0)0 0)0
1, 5 asym !0)43 1)32 0)05 1)83 !0)35 1)09 0)0 0)24 !0)07 0)07
1, 6 sym !0)15 0)0 !1)07 !0)35 1)52 0)0 0)45 0)0 !0)65 !0)69
1, 6 asym 0)0 0)0 !0)35 1)09 0)0 1)63 0)0 !0)46 !0)69 0)64
1, 3 sym 1)74 0)0 0)0 0)0 0)45 0)0 3)15 0)0 0)0 0)0
1, 3 asym 0)0 1)77 0)0 0)24 0)0 !0)46 0)0 2)70 0)12 !0)11
1, 7 sym !0)26 0)27 0)02 !0)07 !0)65 !0)68 0)0 0)12 1)32 0)04
1, 7 asym !0)28 !0)25 0)0 0)07 !0)69 0)64 0)0 !0)11 0)04 1)33

TABLE 4

Predicted wet natural frequencies of partially ,lled cylindrical shell (Hz) (a) andPartially ,lled
and half-submerged cylindrical shell (Hz) (b)

(a)

Mode 4/5-"lled 1/2-"lled 1/5-"lled Empty

1 97)6 101)2 111)4 223)8
2 97)8 102)0 113)4 224)2
3 116)7 130)5 169)3 232)4
4 117)6 134)5 182)0 232)4
5 146)8 184)6 242)7 299)2
6 149)8 186)6 243)1 299)2

(b)

Mode
4/5-"lled

half-submerged
1/2-"lled

half-submerged
1/5-"lled

half-submerged
Empty

half-submerged

1 73)5 74)6 79)0 99)9
2 73)9 75)3 79)4 100)8
3 92)3 97)2 113)5 129)1
4 94)3 100)8 115)1 133)1
5 123)2 140)9 164)4 184)1
6 126)4 143)3 169)7 185)1
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surface, the generalized hydrodynamic forces exhibit frequency dependence because of the
free surface wave disturbances. The generalized added mass values start with large "nite
values at very small frequencies, increase to their maximum values in the low-frequency
region, and decrease in value until they reach a constant value at higher frequencies [12].
Therefore, these constant generalized added mass values were used for the results of the
three-dimensional hydroelasticity method presented in Figure 5.



Figure 5. Modes and associated frequencies of half submerged cylindrical shell.
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In a further study, the e!ect of both external and contained #uids on the dynamic
behaviour of the shell structure was investigated. The calculated wet natural frequencies are
presented in Table 4(b) for the cases of the empty, half-"lled, 4/5-"lled and 1/5-"lled,
half-submerged horizontal cylindrical shells. The same panel idealization used for the
half-"lled cylindrical shell was adopted for the outer wetted surface of the half-submerged
shell in all cases. The wet natural frequency values behave as expected. That is to say that
these frequencies decrease with increasing area of contact with the #uid. The largest area of
contact was in the case of the 4/5-"lled and half-submerged shell. Therefore, the lowest
frequencies occurred in this case (see Table 4(b)). It should be noted that all the cases where
this cylindrical shell is #oating are arti"cial in the sense that the shell is not free-#oating.

4. CONCLUSIONS

Free vibration characteristics of partially "lled and/or submerged horizontal cylindrical
shells were obtained through an approach based on a boundary integral equation and the
method of images which is demonstrated to be suitable for relatively high-frequency
structures. The in vacuo dynamic characteristics (i.e., natural frequencies and mode shapes)
of the horizontal shell were obtained by using the "nite element idealization of 64 elements
around the circumference and 32 elements along the shell. A maximum number of 24
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in vacuo modes*12 symmetric and 12 antisymmetric were calculated by using the ANSYS
"nite element software and they were included in the wet part of the analysis. For the
hydrodynamic calculations, the 1024, 1344 and 704 hydrodynamic panel idealizations were
adopted, respectively, for the half-"lled and/or submerged, 4/5-"lled and 1/5-"lled shell
cases.

From the results presented, the calculations based on the boundary integral equation
method with the method of images show a good agreement with the experimental
measurement [8] (see Figures 2}4). However, as seen from these "gures, there appears
a tendency to overestimate slightly the values of resonance frequencies. The di!erences lie
within the limits that one would expect when comparing experimental results with
numerical calculations. On the other hand, the results of the present study are also in good
agreement with the predictions based on the three-dimensional hydroelasticity method
[12]. This present study con"rms that the theory described here is applicable to
high-frequency structures such as liquid storage tanks, pipelines, etc.

As seen from the generalized added masses of Table 3, there is a considerable coupling
between some of the symmetric and antisymmetric in vacuo modes. This is because some of
the in vacuo modes are not perfectly symmetric or antisymmetric with respect to the
symmetry plane that passes through the centre of the cylinder and is perpendicular to the
free surface of the water. This matter requires further investigation. It can be also realized
from Table 3 that the generalized added mass values decrease with increasing number of
circumferential waves, n.

It can be seen from Tables 4(a) and (b) that the frequency values behave as expected. That
is to say that the frequencies decrease with increasing area of contact with the #uid. The
largest area of contact was in the case of 4/5-"lled and half-submerged cylindrical shell.
Therefore, the lowest frequencies occurred in this case. On the other hand, it should be
noted that the calculated wet natural frequencies of the half-"lled shell are quite similar to
those of the empty, but half-submerged shell. As seen from Tables 4(a) and (b), the wet
natural frequencies of the half-"lled shell are slightly higher than those of the half-
submerged and empty shell.

The present study has demonstrated the versatility of the method developed through
a cylindrical shell with no internally attached structures. Future work, thus, may include the
investigation of the dynamic characteristics of the shell structure with internal attachments
such as ribs, struts, platforms, etc. The present method may also be extended to determine
the e!ects of a #owing #uid on the vibration characteristics of an anisotropic cylindrical
shell submerged and may be subjected to an internal and/or external #ow.
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